

© COPYRIGHT 2021 Log-On Software Ltd. all rights reserved

Performance Analysis for Table Caching (PA4TC)
A pre-POC guide to estimating QuickSelect caching benefits

The best way estimate QuickSelect CPU and IO savings is to run QuickSelect in SURVEY mode in
your production environment. There may, however, be situations where you need to an estimate
of potential QuickSelect savings before you bring the QuickSelect in-house. This is best
accomplished by analyzing performance data generated by commonly used Db2 performance
monitors including CA Detector® for Db2, BMC AMI Apptune®, IBM Db2 Query Monitor® and
Syncsort® Optimize Db2.

A Db2 performance monitor can be used not just to collect, but also to aggregate performance data
by SQL – the starting point for this analysis. This paper sets forth a simple approach to using the
data these monitors collect to estimate potential QuickSelect savings.

If possible, collect performance data during peak production hours. This is typically the busiest time
for Db2 applications as well as the period that drives your peak four-hour rolling average setting
the monthly license charges for your mainframe software. If available, SCRT reports can help
pinpoint the prior month’s peak giving you a likely target for your collection period. Use your
monitor to collect and aggregate the following data to intervals of between 1 to 3 hours:

• CollectionID
• PackageName
• SQL Statement
• SQL Section
• SQL Type (Select, Delete, Insert etc)
• Number of GETPAGE
• Number of executed SQL
• Number of SYNCRD
• CPU percentage spent on the specific SQL
• Elapsed time percentage on the specific SQL

Once you have collected your data and generated your reports, look for FETCH and SELECT SQL
statements whose aggregate data has all four of the following characteristics:

1) Consumes significant percentage of CPU during the monitored period

2) Aggregate GETPAGE per SQL Section that is high

3) Aggregate number of SQL Calls is high

4) Aggregate SYNCRD is low

© COPYRIGHT 2021 Log-On Software Ltd. all rights reserved

Statements meeting these criteria are good candidates for QuickSelect caching for the following
reasons:

1) A high CPU percentage indicates good potential ROI

2) A high number of SELECTS or FTECHES means the SQL it is used a lot by the package and
that data use may possibly be repetitive

3) A high GETPAGE number can indicate that the data is frequently looked up by DB2 via DB2
Buffers – an indication that the data may be relatively static

4) A low number of SYNCRD means the data was not read from the disk again – and indication
that it changes infrequently

Once you have identified good candidates using above criteria, next consider the characteristics of
the tables the SQL are accessing to help you narrow the list:

1) If the table (or tables) a candidate SQL is accessing has a very high number of rows (many
millions or more), the SQL will remain a good candidate only if the table remains stable for
relatively long intervals of time. A loose rule of thumb for QuickSelect: the greater the
number of rows in a table, the more stable the data should be.

2) If the average number of accesses per row in a table is high for a candidate SQL, that SQL
remains a good candidate. A high number will point to repetitive access to the data – ideal
candidate for caching. To determine the average number of accesses per row, divide the
number of executions of a candidate SQL by the number of rows in the table. (In practice
this number can be misleading as not every row is read the same number of times. There
will be certain values that are read many times over again and these are perfect candidates
for caching even if the average number of accesses per row is low.)

Once you have narrowed down your list of candidates, a rough estimate of potential CPU savings is
90% of the CPU spent on the above statements. In some cases, the amount saved may be less. In
others it may be very close to 100%.

Please refer to the small sample report in Appendix A containing a few SQL statement examples that
fit the above criteria. Statements such as these are good candidates for analysis using QuickSelect’s
SURVEY mode. If your preliminary analysis yields promising results, you may feel justified in installing
QuickSelect for a Proof of Concept (POC). Running QuickSelect in SURVEY mode in production will,
with minimal overhead during peak times, take the analysis one step further by pointing to
repetitive access to the same tables by the same SQL STATEMENT with the same host variables.

© COPYRIGHT 2021 Log-On Software Ltd. all rights reserved

APPENDIX A

Sample from a common DB2 Analyzing tool

The lines marked yellow are good candidates for QuickSelect caching

 Type Prog-Collid/Stmt TimePct CPUPct Getpage SQL Calls SyncRd
 ---- --------------------------- ------- ------- ---------- ---------- -------
 PKGE QA7CSQ1-ALQAP0CO 1.33% 3.21% 1359386 827
 SQL 0001857-SELECT .72% 1.51% 1317813 441247 304
 SQL 0001996-SELECT .35% .98% 1318598 443497 141
 SQL 0001778-SELECT .13% .37% 666768 224673 0
 SQL 0001958-SELECT .11% .33% 678031 246548 0
 SQL 0002072-SELECT .00% .00% 9237 3079 376
 SQL 0001930-UPDATE .00% .00% 822 274 0
 SQL 0002154-SELECT .00% .00% 204 68 6

 PKGE AS7CEXEN-ALASP0CO .91% 1.98% 2018707 0
 SQL 0000616-FETCH .73% 1.63% 436712 1489139 0
 SQL 0000594-OPEN .16% .31% 0 264784 0
 SQL 0000892-CLOSE .00% .02% 0 264784 0

 PKGE TC9C1500-ALTCP0CO .42% 1.22% 727635 28
 SQL 0001233-SELECT .42% 1.22% 897432 727635 28
 PKGE PE9C1640-ALPEP0CB .40% .05% 39930 32870
 SQL 0001372-FETCH .19% .02% 26546 13310 14551
 SQL 0001426-SELECT .15% .01% 23004 6655 11838
 SQL 0001087-SELECT .06% .01% 19947 6655 6478
 SQL 0001341-OPEN .00% .00% 538 6655 3
 SQL 0001606-CLOSE .00% .00% 0 6655 0

 PKGE BG9C7710-ALACP0CO .32% .90% 647478 0
 SQL 0000279-SELECT .32% .90% 530123 647478 0
 PKGE AS9CMVRE-ALASP0CO .31% .89% 302723 0
 SQL 0000346-SELECT .20% .51% 302792 151396 0
 SQL 0000369-SELECT .10% .38% 302654 151327 0

 PKGE QX2C1DI5-ALAXP0CO .26% .54% 224230 0
 SQL 0000372-SELECT .26% .54% 444508 224230 0
 PKGE AS9CMVED-ALASP0CO .23% .63% 679381 0
 SQL 0000408-SELECT .22% .61% 543308 658193 0
 SQL 0000509-SELECT .00% .01% 22162 21188 0

